Complications of Kidney in Severe Malaria

Forman Erwin Siagian *

Department of Parasitology and the Center of Biomedic Research, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia.

*Author to whom correspondence should be addressed.


Abstract

Malaria is an infectious protozoan parasitic disease transmitted by Anopheles spp mosquito. As a disease entity, malaria is still a major global health problem due to its morbidity and mortality that endangered millions of individuals inhabitants in tropical region. Kidney derangement is moderately frequent in severe malaria caused by the species P. falciparum and also P. malariae, but seldom this condition has also been reported in malaria due to P. vivax. Severe or complicated malaria can occur due to delay or failure of treatment. Making correct and early diagnosis is a prerequisite for successful treatment. Actually, a series of events that begins with the entry of blood protozoa into the host which then causes hemodynamic disturbances and loss of normal capillary capacity. Hemodynamic dysfunction, immune response and with addition from the consequences of severe malaria complications in other organs (e.g., liver) leading to worsening of kidney function in severe malaria. This paper cover the recent findings of kidney involvement in severe malaria and other important facts related to this issue.

Keywords: Infection, severity, complication, glomerulonephritis, capillary, hemodynamic


How to Cite

Siagian, F. E. (2022). Complications of Kidney in Severe Malaria. Asian Journal of Research in Infectious Diseases, 11(3), 6–17. https://doi.org/10.9734/ajrid/2022/v11i3218


References

Lesmana SD, Maryanti E, Haslinda L, Putra W, Fadhillah MN, Anwar FR, et al. Identification of anopheles mosquito species as malaria vector in Riau, Indonesia. Jurnal Ilmu Kedokteran (Journal of Medical Science). 2021;14(1):21-9.

Akpan GE, Adepoju KA, Oladosu OR. Potential distribution of dominant malaria vector species in tropical region under climate change scenarios. PLoS One. 2019 Jun 19;14(6):e0218523.

Available:https://doi.org/10.1371/journal.pone.0218523

Kalil FS, Bedaso MH, Wario SK. Trends of malaria morbidity and mortality from 2010 to 2017 in Bale Zone, Ethiopia: Analysis of surveillance data. Infect Drug Resist. 2020 Dec 8;13:4379-4387.

Available:https://doi.org/10.2147/IDR.S284281

Siagian FE. Malaria epidemiology: Specific vulnerable group in the population. International Journal of Research and Reports in Hematology. 2020;3(2):41-52.

Available:https://journalijr2h.com/index.php/IJR2H/article/view/30124

Conn JE, Grillet ME, Correa M, Sallum MM. Malaria transmission in South America—Present status and prospects for elimination. In: Manguin S, Dev V, editors. Towards Malaria Elimination - A Leap Forward [Internet]. London: IntechOpen; 2018.

Available:https://www.intechopen.com/chapters/62219 https://doi.org/10.5772/intechopen.76964

Domínguez García M, Feja Solana C, Vergara Ugarriza A. Imported malaria cases: The connection with the European ex-colonies. Malar J. 2019;18,397.

Available:https://doi.org/10.1186/s12936-019-3042-1

Lee WC, Russell B, Rénia L. Sticking for a cause: The falciparum malaria parasites cytoadherence paradigm. Front Immunol. 2019;10:1444.

Available:https://doi.org/10.3389/fimmu.2019.01444.

Trampuz A, Jereb M, Muzlovic I, Prabhu RM. Clinical review: Severe malaria. Crit Care. 2003;7(4):315-23.

Available:https://doi.org/10.1186/cc2183

Plewes K, Turner GDH, Dondorp AM. Pathophysiology, clinical presentation, and treatment of coma and acute kidney injury complicating falciparum malaria. Curr Opin Infect Dis. 2018;31(1):69-77.

Available:https://doi.org/10.1097/QCO.0000000000000419

Hanson J, Lee SJ, Hossain MA. Microvascular obstruction and endothelial activation are independently associated with the clinical manifestations of severe falciparum malaria in adults: An observational study. BMC Med. 2015;13:122.

Available:https://doi.org/10.1186/s12916-015-0365-9

Brown DD, Solomon S, Lerner D, Del Rio M. Malaria and acute kidney injury. Pediatr Nephrol. 2020;35(4):603-8.

Available:https://doi.org/10.1007/s00467-018-4191-0.

Landier J, Parker DM, Thu AM. The role of early detection and treatment in malaria elimination. Malar J. 2016;15:363.

Available:https://doi.org/10.1186/s12936-016-1399-y

Graumans W, Jacobs E, Bousema T, Sinnis P. When is a plasmodium-infected mosquito an infectious mosquito? Trends Parasitol. 2020;36(8):705-16.

Available:https://doi.org/10.1016/j.pt.2020.05.011.

Anonymous. Malaria susceptibility—It's not all in the genes. PLoS Med, 2005;2(12): e411.

Available:https://doi.org/10.1371/journal.pmed.0020411

Mavondo G A, Mzingwane ML. Severe Malarial Anemia (SMA) pathophysiology and the use of phytotherapeutics as treatment options. In: Khan J (ed). Current Topics in Anemia [Internet]. London: IntechOpen; 2017.

Available:https://doi.org/10.5772/intechopen.70411

Mathews SE, Bhagwati MM, Agnihotri V. Clinical spectrum of Plasmodium vivax infection, from benign to severe malaria: A tertiary care prospective study in adults from Delhi, India. Trop Parasitol. 2019;9: 88-92.

Available:https://doi.org/10.4103/tp.TP_2_19

Bria YP, Yeh CH, Bedingfield S. Significant symptoms and nonsymptom-related factors for malaria diagnosis in endemic regions of Indonesia. Int J Infect Dis. 2021; 103:194-200.

Available:https://doi.org/10.1016/j.ijid.2020.11.177

da Silva Junior GB, Pinto JR, Barros EJG, Farias GMN, Daher EDF. Kidney involvement in malaria: An update. Revista do Instituto de Medicina Tropical de São Paulo [online]. 2017;59:e53.

Available:https://doi.org/10.1590/S1678-9946201759053

Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria diagnosis: A brief review. Korean J Parasitol. 2009;47(2):93-102.

Available:https://doi.org/10.3347/kjp.2009.47.2.93

Brejt JA. Golightly LM. Severe malaria: Update on pathophysiology and treatment. Current Opinion in Infectious Diseases. 2019;32(5):413-8.

Available:https://doi.org/10.1097/QCO.0000000000000584

Rahimi BA, Thakkinstian A, White NJ. Severe vivax malaria: A systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.

Available:https://doi.org/10.1186/1475-2875-13-481

Bartoloni A, Zammarchi L. Clinical aspects of uncomplicated and severe malaria. Mediterr J Hematol Infect Dis. 2012;4(1): e2012026.

Available:https://doi.org/10.4084/MJHID.2012.026

Voorberg-van der Wel A, Kocken CHM, Zeeman AM. Modeling relapsing malaria: Emerging technologies to study parasite-host interactions in the liver. Front Cell Infect Microbiol. 2021;10:606033.

Available:https://doi.org/10.3389/fcimb.2020.606033

Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Jung RK, Nandy A, et al. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. The Journal of Infectious Diseases. 2007;195(7):927–33.

Available:https://doi.org/10.1086/512241

Badiane AS, Diongue K, Diallo S. Acute kidney injury associated with Plasmodium malariae infection. Malar J. 2014;13:226.

Available:https://doi.org/10.1186/1475-2875-13-226

Katsoulis O, Georgiadou A, Cunnington AJ. Immunopathology of acute kidney injury in severe malaria. Front Immunol. 2021;12:651739.

Available:https://doi.org/10.3389/fimmu.2021.651739

Sitprija V. Nephropathy in falciparum malaria. Kidney International. 1988;34(6). Available:https://doi.org/10.1038/ki.1988.262

Berger M, Birch LM, Conte NF. The nephrotic syndrome secondary to acute glomerulonephritis during falciparum malaria. Ann Intern Med. 1967;67:1163-1171.

Available:https://doi.org/10.7326/0003-4819-67-6-1163

Lee MSJ, Coban C. Unforeseen pathologies caused by malaria. International Immunology. 2018;30(3):121–9.

Available:https://doi.org/10.1093/intimm/dxx076

Delves M, Plouffe D, Scheurer C, Meister S, Wittlin S, Winzeler EA, et al. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: A comparative study with human and rodent parasites. PLoS Med. 2012;9(2):e1001169.

Available:https://doi.org/10.1371/journal.pmed.1001169.

White NJ. Malaria parasite clearance. Malar J. 2017;16(1):88.

Available:https://doi.org/10.1186/s12936-017-1731-1.

Erratum in: Malar J. 2017;16(1):194.

Nguansangiam S, Day NPJ, Hien TT, Mai NTH, Chaisri U, Riganti M, Dondorp AM, et al. A quantitative ultrastructural study of renal pathology in fatal Plasmodium falciparum malaria. Tropical Medicine & International Health. 2007;12:1037-50.

Available:https://doi.org/10.1111/j.1365-3156.2007.01881.x

Wichapoon B, Punsawad C, Chaisri U. Glomerular changes and alterations of zonula occludens-1 in the kidneys of Plasmodium falciparum malaria patients. Malar J. 2014;13:176.

Available:https://doi.org/10.1186/1475-2875-13-176

Mohandas N, An X. Malaria and human red blood cells. Med Microbiol Immunol. 2012;201(4):593-8.

Available:https://doi.org/10.1007/s00430-012-0272-z

Myers DR, Lam WA. Vascularized microfluidics and their untapped potential for discovery in diseases of the microvasculature. Annu Rev Biomed Eng. 2021;23:407-32.

Available:https://doi.org/10.1146/annurev-bioeng-091520-025358.

Woodford J, Yeo TW, Piera KA, Butler K, Weinberg JB, McCarthy JS, et al. Early endothelial activation precedes glycocalyx degradation and microvascular dysfunction in experimentally induced Plasmodium falciparum and Plasmodium vivax infection. Infect Immun. 2020;88(5): e00895-19.

Available:https://doi.org/10.1128/IAI.00895-19.

Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ. Sequestration and tissue accumulation of human malaria parasites: Can we learn anything from rodent models of malaria? PLoS Pathog. 2010; 6(9):e1001032.

Available:https://doi.org/10.1371/journal.ppat.1001032

McQuaid F, Rowe J. Rosetting revisited: A critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology. 2020; 147(1):1-11.

Available:https://doi.org/10.1017/S0031182019001288

Ramos S, Carlos AR, Sundaram B, Jeney V, Ribeiro A, Gozzelino R, et al. Renal control of disease tolerance to malaria. Proc Natl Acad Sci U S A. 2019;116(12): 5681-5686.

Available:https://doi.org/10.1073/pnas.1822024116

Turner GD, Ly VC, Nguyen TH, Tran TH, Nguyen HP, Bethell D, et al. Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am J Pathol. 1998; 152(6):1477-87.

Autino B, Corbett Y, Castelli F, Taramelli D. Pathogenesis of malaria in tissues and blood. Mediterr J Hematol Infect Dis. 2012;4(1):e2012061.

Available:https://doi.org/10.4084/MJHID.2012.061

Schwartz E, Sadetzki S, Murad H, Raveh D. Age as a risk factor for severe Plasmodium falciparum malaria in nonimmune patients. Clinical Infectious Diseases. 2001;33(10):1774–7.

Available:https://doi.org/10.1086/322522

Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014;5:115.

Available:https://doi.org/10.3389/fphar.2014.00115

Kotepui M, Piwkham D, PhunPhuech B, Phiwklam N, Chupeerach C, Duangmano S. Effects of malaria parasite density on blood cell parameters. PLoS One. 2015 Mar 25;10(3):e0121057.

Available:https://doi.org/10.1371/journal.pone.0121057

Avril M, Bernabeu M, Benjamin M, Brazier AJ, Smith JD. Interaction between Endothelial Protein C receptor and intercellular adhesion molecule 1 to mediate binding of Plasmodium falciparum-Infected erythrocytes to endothelial cells. mBio. 2016;7(4):e00615-16.

Available:https://doi.org/10.1128/mBio.00615-16

Lee WC, Russell B, Rénia L. Sticking for a cause: The falciparum malaria parasites cytoadherence paradigm. Front Immunol. 2019;10:1444.

DOI: 10.3389/fimmu.2019.01444

Ouma BJ, Ssenkusu JM, Shabani E, Datta D, Opoka RO, Idro R, Bangirana P, Park G, Joloba ML, Kain KC, John CC, Conroy AL. Endothelial activation, acute kidney injury, and cognitive impairment in pediatric severe malaria. Crit Care Med. 2020;48(9):e734-e743.

Available:https://doi.org/10.1097/CCM.0000000000004469

Ademolue TW, Aniweh Y, Kusi KA, Awandare GA. Patterns of inflammatory responses and parasite tolerance vary with malaria transmission intensity. Malar J. 2017;16(1):145.

Available:https://doi.org/10.1186/s12936-017-1796-x

Oyong DA, Loughland JR, Soon MSF, Chan JA, Andrew D, Wines BD, et al. Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine. 2022; 75:103784.

Available:https://doi.org/10.1016/j.ebiom.2021.103784

Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria: The role of the endothelial barrier. Virulence. 2013;4(6): 543-55.

Available:https://doi.org/10.4161/viru.25949

Randall LM, Kenangalem E, Lampah DA, Tjitra E, Mwaikambo ED, Handojo T, et al. Age-related susceptibility to severe malaria associated with galectin-2 in highland Papuans. J Infect Dis. 2010;202(1):117- 24.

Available:https://doi.org/10.1086/653125

Yap XZ, Hustin LSP, Sauerwein RW. TH1-Polarized TFH cells delay naturally-acquired immunity to malaria. Front Immunol. 2019;10:1096.

Available:https://doi.org/10.3389/fimmu.2019.01096

Rodrigues-da-Silva, Rodrigo Nunes. Alterations in cytokines and haematological parameters during the acute and convalescent phases of Plasmodium falciparum and Plasmodium vivax infections. Memórias do Instituto Oswaldo Cruz [online]. 2014;109(2):154-62.

Available:https://doi.org/10.1590/0074-0276140275

Hojo-Souza NS, Pereira DB, de Souza FS, de Oliveira Mendes TA, Cardoso MS, Tada MS, Zanini GM, Bartholomeu DC, Fujiwara RT, Bueno LL. On the cytokine/chemokine network during Plasmodium vivax malaria: New insights to understand the disease. Malar J. 2017;16(1):42.

Available:https://doi.org/10.1186/s12936-017-1683-5

Jason J, Archibald LK, Nwanyanwu OC, Bell M, Buchanan I, Larned J, Kazembe PN, Dobbie H, Parekh B, Byrd MG, Eick A, Han A, Jarvis WR. Cytokines and malaria parasitemia. Clin Immunol. 2001;100(2): 208-18.

Available:https://doi.org/10.1006/clim.2001.5057

Mavondo GA, Mkhwanazi BN, Mzingwane ML, Dangarembizi R, Zambuko B, Moyo O, et al. Malarial inflammation-driven pathophysiology and its attenuation by triterpene phytotherapeutics. In: Pacheco, G. A. B., Kamboh, A. A., editors. Parasitology and Microbiology Research [Internet]. London: IntechOpen; 2019.

Available:https://doi.org/10.5772/intechopen.88731

Frimpong A, Amponsah J, Adjokatseh AS, Agyemang D, Bentum-Ennin L, Ofori EA, et al. Asymptomatic malaria infection is maintained by a balanced pro- and anti-inflammatory response. Front Microbiol. 2020;11:559255.

Available:https://doi.org/10.3389/fmicb.2020.559255.

Erratum in: Front Microbiol. 2021;12: 686435.

Aguilar R, Campo JJ, Chicuecue S. Changing plasma cytokine, chemokine and growth factor profiles upon differing malaria transmission intensities. Malar J. 2019;18,406.

Available:https://doi.org/10.1186/s12936-019-3038-x

Keegan LT, Dushoff J. Population-level effects of clinical immunity to malaria. BMC Infect Dis. 2013;13,428.

Available:https://doi.org/10.1186/1471-2334-13-428

Nahrendorf W, Ivens A, Spence PJ. Inducible mechanisms of disease tolerance provide an alternative strategy of acquired immunity to malaria. Elife. 2021 Mar 23;10:e63838.

Available:https://doi.org/10.7554/eLife.63838

Hawkes MT, Leligdowicz A, Batte A, Situma G, Zhong K, Namasopo S, Opoka RO, et al. Pathophysiology of acute kidney injury in malaria and non-malarial febrile illness: A prospective cohort study. Pathogens. 2022;11(4):436.

Available:https://doi.org/10.3390/pathogens11040436

Lever JM, Boddu R, George JF, Agarwal A. Heme Oxygenase-1 in kidney health and disease. Antioxid Redox Signal. 2016; 25(3):165-83.

Available:https://doi.org/10.1089/ars.2016.6659

Anand AC, Puri P. Jaundice in malaria. J Gastroenterol Hepatol. 2005;20(9):1322-32.

Available:https://doi.org/10.1111/j.1440-1746.2005.03884.x

Evans JA, May J, Ansong D, Antwi S, Asafo-Adjei E, Nguah SB, et al. Capillary refill time as an independent prognostic indicator in severe and complicated malaria. J Pediatr. 2006 Nov;149(5):676-81.

Available:https://doi.org/10.1016/j.jpeds.2006.07.040

Graham SM, Chen J, Chung DW. Endothelial activation, haemostasis and thrombosis biomarkers in Ugandan children with severe malaria participating in a clinical trial. Malar J. 2016;15:56.

Available:https://doi.org/10.1186/s12936-016-1106-z

Kawai S, Matsumoto J, Aikawa M, Matsuda H. Increased plasma levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell molecule-1 (sVCAM-1) associated with disease severity in a primate model for severe human malaria: Plasmodium coatneyi-Infected Japanese macaques (Macaca fuscata). J Vet Med Sci. 2003; 65(5):629-31.

Available:https://doi.org/10.1292/jvms.65.

Oluboyo AO, Chukwu SI, Oluboyo BO, Odewusi OO. Evaluation of Angiopoietins 1 and 2 in Malaria-Infested Children. J Environ Public Health. 2020;2020: 2169763.

Available:https://doi.org/10.1155/2020/2169763

Andrade BB, Barral-Netto M. Biomarkers for susceptibility to infection and disease severity in human malaria. Mem Inst Oswaldo Cruz. 2011;106 Suppl 1:70-8.

Available:https://doi.org/10.1590/s0074-02762011000900009

Gucun M, Akyuz O, Bayram E, Ozgun Cakmak E. Systemic immune-inflammation index is a novel marker to predict contrast-induced acute kidney injury. EJMI. 2021;5(4):435-440.

Available:https://doi.org/10.14744/ejmi.2021.89773

Dziedzic EA, Gąsior JS, Tuzimek A, Paleczny J, Junka A, Dąbrowski M, et al. Investigation of the associations of novel inflammatory biomarkers—Systemic Inflammatory Index (SII) and Systemic Inflammatory Response Index (SIRI)—With the severity of coronary artery disease and acute coronary syndrome occurrence. International Journal of Molecular Sciences. 2022;23(17):9553.

Available:https://doi.org/10.3390/ijms23179553

Han K, Shi D, Yang L, Wang Z, Li Y, Gao F, et al. Prognostic value of systemic inflammatory response index in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Annals of Medicine. 2022;54(1):1667-1677.

Available:https://doi.org/10.1080/07853890.2022.2083671