Transgenesis of Bioluminescence (BL) Gene and Its Potential Use for Malaria Residual Transmission Issue and Other Vector Borne Diseases: New Considerations for Vector and Vector Borne Diseases (VBD) Control

Main Article Content

G. Carnevale
P. Carnevale

Abstract

The present article considers the potential of transgenesis of the bioluminescent gene for malaria and other vector borne diseases (VBD) control. Vector control is an important component of every vector control operations for the vector borne disease control. Actually the bioluminescence phenomena and the green fluorescent protein GPF open great field of researches and “On December 10, 2008 Osamu Shimomura, Martin Chalfie and Roger Tsien were awarded the Nobel Prize in Chemistry for "the discovery and development of the green fluorescent protein, GFP". Bio-molecular technologies and transgenesis open the field for getting BL mosquitoes such as Plasmodium (several references) for “Transmission Reducing Activity” (TRA) without any hazard on human beings and ecological level. For exemple BL mosquitoes would be of paramount importance for mark-release-recapture becoming easier to implement and giving more relevant and reliable data on relation between density (size of the population) and distance (and wind) as the vector population size decrease with increasing distance from the source of production (breeding site) or release point. BL appeared already of great interest to understand the relation vector/parasite and to assess transmission intensity. Our idea is to genetically produce “Bioluminescent Mosquitoes” allowing a better identification of their presence, behavior, densities, infected specimens, risk of transmission before/after vector control operations which could be greatly improved thanks to the targeting of mosquitoes resting site or flight range and any other biological component.

Keywords:
Transgenesis, vector borne disease, bioluminescent mosquitoes, bio-molecular technologies.

Article Details

How to Cite
Carnevale, G., & Carnevale, P. (2021). Transgenesis of Bioluminescence (BL) Gene and Its Potential Use for Malaria Residual Transmission Issue and Other Vector Borne Diseases: New Considerations for Vector and Vector Borne Diseases (VBD) Control. Asian Journal of Research in Infectious Diseases, 6(3), 6-19. https://doi.org/10.9734/ajrid/2021/v6i330196
Section
Original Research Article

References

Bhatt S, Weiss D, Cameron E, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526(7572):207–211.

Durnez L, Coosemans M. Residual transmission of malaria: An old issue for new approaches. In: Manguin S, Editor Anopheles mosquitoes - New insights into malaria vectors Rijeka, Coratie: InTechOpen. 2013;671-704.

Killeen G. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330.

Wangdi K, Furuya-Kanamori L, Clark J, et al. Comparative effectiveness of malaria prevention measures: A systematic review and network meta-analysis. Parasit Vectors. 2018;11(1):210.

Monroe A, Moore S, Koenker H, et al. Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in Sub-Saharan Africa: A review of the published literature. Malar J. 2019;18(1):6.

Pollard E, MacLaren D, Russell T, Burkot T. Protecting the peri-domestic environment: The challenge for eliminating residual malaria. Sci Rep. 2020;10(1): 7018.

Hamon J, Choumara R, Adam JP, et al. Le Paludisme dans la zone pilote de Bobo Dioulasso Haute-Volta. Cahiers de l'ORSTOM. 1959;1:125.

Mouchet J, Gariou U. Exophilie et exophagie d'Anopheles gambiae Giles 1902 dans le Sud Cameroun. Bull Soc path Exot. 1957;50:446.

Mouchet J, Gariou J. Anopheles moucheti au Cameroun. Cah ORSTOM, sér Ent med Parasitol. 1966;4:71.

Carnevale P, Le Goff G, Toto J-C, Robert V. Anopheles nili 1904 as main vector of human malaria in villages in South Cameroon. Med Vet Entomol. 1992;6:135-138.

Hemingway J, Field L, Vontas J. An overview of insecticide resistance. Science Washington. 2002;298(5591):96-97.

Ranson H, Lissende N. Insecticide resistance in African anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–196.

Riehle M, Tullu Bukhari T, Awa Gneme A, et al. The Anopheles gambiae 2La chromosome inversion is associated with susceptibility to Plasmodium falciparum in Africa. Elife. 2017;6:e25813.

Service M. Mosquito ecology. Field sampling methods. Applied Science Publishers Ltd, London. 1976;583.

Zhu L, Müller G, Marshall J, et al. Is outdoor vector control needed for malaria elimination? An individual-based modelling study. Malar J. 2017;16:266.

Obsomer V, Defourny P, Coosemans M. The Anopheles dirus complex: Spatial distribution and environmental drivers. Malar J. 2007;6:26.

Phunngam P, Boonkue U, Chareonviriyaphap T, et al. Molecular identification of four members of the Anopheles dirus complex using the mitochondrial cytochrome C oxidase subunit I gene. Am Mosq Control Assoc. 2017;33(4):263-269.

Zhu L, Hu X, Xu J, Li S, Feng X. Identification, molecular structure and expression characteristics of Torso like gene in Anopheles dirus. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2020;32(6):584-590.

Wilson T, Hastings J. Bioluminescence. Annu Rev Cell Dev Biol. 1998;14:197-230.

Reeve B, Sanderson T, Ellis T, Freemont P. How synthetic biology will reconsider natural bioluminescence and its applications. Adv Biochem Eng Biotechnol. 2014;145:3-30.

Zhang B, Jones K, McCutcheon D, Prescher J. Pyridone Luciferins and Mutant Luciferases for bioluminescence imaging. Chembiochem. 2018;19(5):470-477.

da Silva PL, da Silva JE. Firefly chemoluminescence and bioluminescence: Efficient generation of excited states. Chemphyschem. 2012;13(9):2257-2262.

Cheng Y, Liu Y. Luciferin regeneration in firefly bioluminescence via proton-transfer-facilitated hydrolysis, condensation and chiral inversion. Chemphyschem. 2019;20(13):1719-1727.

Chen X, Dong Z, Liu G, He J, Zhao R, Wang W, et al. Phylogenetic analysis provides insights into the evolution of Asian fireflies and adult bioluminescence. Mol Phylogenet Evol. 2019;140:106600.

Oliveira G, Viviani V. Temperature effect on the bioluminescence spectra of firefly luciferases: Potential paplicability for ratiometric biosensing of temperature and pH. Photochem Photobiol Sci. 2019;18(11):2682-2687.

Zhang R, He J, Dong Z, et al. Genomic and experimental data provide new insights into luciferin biosynthesis and bioluminescence evolution in fireflies. Sci Rep. 2020;10(1):15882.

Chalfie M. Green fluorescent protein. Photochem Photobiol Sci. 1995;62(4):651-656.

Prasher D. Using GFP to see the light. Trends Genet. 1995;11(8):320-323.

Okabe M, Ikawa M, Kominami K, et al. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997;407(3):313-319.

Gorokhovatsky A, Marchenkov V, Rudenko N, et al. Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochem Biophys Res Commun. 2004;320(3):703-711.

Belogurova N, Kudryasheva N, Alieva R, Sizykh AJ. Spectral components of bioluminescence of aequorin and obelin. Photochem Photobiol B. 2008;92(2):117-122.

Markova S, Burakova L, Frank L, et al. Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria: cDNA cloning, expression and characterization of novel recombinant protein. Photochem Photobiol Sci. 2010;9(6):757-765.

Malikova N, Visser N, van Hoek A, et al. Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria is an obligate dimer and does not form a stable complex with the Ca(2+)-discharged photoprotein clytin. Biochemistry. 2011;50(20):4232-4241.

Titushin M, Feng Y, Lee J, Vysotski E, Liu Z. Protein-protein complexation in bioluminescence. Protein Cell. 2011;2(12):957-972.

Chen S, Ferré N, Liu Y. QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence and fluorescence: A general understanding of the bioluminescence of several marine organisms. Chemistry. 2013;19(26):8466-8472.

Fourrage C, Swann K, Gonzalez Garcia J, et al. An endogenous green fluorescent protein-photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer. Open Biol. 2014;4(4): 130206.

Eremeeva E, van Berkel W, Vysotski E. Transient-state kinetic analysis of complex formation between photoprotein clytin and GFP from jellyfish Clytia gregaria. FEBS Lett. 2016;590(3):307-316.

Zhu C, Bai T, Wang H, et al. Single chromophore-based white-light-emitting hydrogel with tunable fluorescence and patternability. ACS Appl Mater Interfaces. 2018;10(45):39343-39352.

Zimmer M. GFP: From jellyfish to the Nobel prize and beyond. Chem Soc Rev. 2009;38(10):2823-2832.

Rioux J, Croset H, Suquet P, Tour S. Essais de marquage par le phospore radioactif P32 pour l'estimation absolue des populations larvaires de culicides (Diptera-Culicidae). Vie Milieu. 1968;19:55-62.

Epopa P, Millogo A, Collins C, et al. The use of sequential mark-release-recapture experiments to estimate population size, survival and dispersal of male mosquitoes of the Anopheles gambiae complex in Bana, a West African humid savannah village. Parasit Vectors. 2017;10(1):376.

Gillies M. Studies on the dispersion and survival of Anopheles gambiae Giles in East Africa, by means of marking and release experiments. Bull Ent Res. 1961;52:99-127.

Cevenini L, Camarda G, Michelini E, et al. Multicolor bioluminescence boosts malaria research: Quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Anal Chem. 2014;86(17):8814-8821.

Stone WJR, Bousema T. The standard membrane feeding assay: Advances using bioluminescence. Methods Mol Biol. 2015;1325:101-112.

Stone WJR, Churcher TS, Graumans W, et al. A scalable assessment of Plasmodium falciparum transmission in the standard membrane- feeding assay, using transgenic parasites expressing green fluorescent protein-luciferase. J Infect Dis. 2014;210(9):1456-1463.

Siciliano G, Alano P. Enlightening the malaria parasite life cycle: Bioluminescent Plasmodium in fundamental and applied research. Front Microbiol. 2015;6:391.

Miller J, Murray S, Vaughan AM, et al. Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS One. 2013;8(4):e60820.

Flores-Garcia Y, Herrera SM, Jhun H, et al. Optimization of an in vivo model to study immunity to Plasmodium falciparum pre-erythrocytic stages. Malar J. 2019;8(1):426.

Azevedo R, Markovic M, Marta Machado M, et al. Bioluminescence method for in vitro screening of Plasmodium transmission-blocking compounds. Antimicrob Agents Chemother. 2017;61(6): e02699-16.

Annoura T, Chevalley S, Janse CJ, et al. Quantitative analysis of Plasmodium berghei liver stages by bioluminescence imaging. Methods Mol Biol. 2013;923:429-443.

Ploemen I, Behet M, Nganou-Makamdop K, et al. Evaluation of immunity against malaria using luciferase-expressing Plasmodium berghei parasites. Malar J. 2011;10:350.

Matsuoka H, Tomita H, Hattori R. Visualization of malaria parasites in the skin using the luciferase transgenic parasite, Plasmodium berghei. Trop Med Health. 2015;43(1):53-61.

Rocha EM, Marinotti O, Serrão DM, et al. Culturable bacteria associated with Anopheles darlingi and their paratransgenesis potential. Malar J. 2021;20(1):83.

Irvin N, Hoddle MS, O'Brochta DA, et al. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes. Proc Natl Acad Sci USA. 2004;101(3):891-896.

Lu H, Kersch C, Taneja-Bageshwar S, Pietrantonio P. A calcium bioluminescence assay for functional analysis of mosquito (Aedes aegypti) and tick (Rhipicephalus microplus) G protein-coupled receptors. J Vis Exp. 2011;20(50):2732.

Adelman ZN, Jasinskiene N, James AA. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol. 2002;121(1):1-10.

McGee CE, Shustov AV, Tsetsarkin K, et al. Infection, dissemination and transmission of a West Nile virus green fluorescent protein infectious clone by Culex pipiens quinquefasciatus mosquitoes. Vector Borne Zoonotic Dis. 2010;10(3):267-274.

Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science. 1994;263:802-805.

Yang F, Moss LG, Phillips GNJ. The molecular structure of green fluorescent protein. Nature Biotech. 1996;14:1246–1251.

Ormo M, Cubitt AB, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science. 1996;273: 1392–1395.

Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509– 544.

Remington SJ. Green fluorescent protein: A perspective. Protein Sciences. 2011;20(9):1509-1519.

Delhove J, Karda R, Hawkins K, et al. Bioluminescence monitoring of promoter activity in vitro and in vivo. Methods Mol Biol. 2017;1651(49-64).